
Graph-structured	Data

Advanced	Topics	in	Foundations	of	Databases,	University	of	Edinburgh,	2019/20

Graph	Databases	and	Applications

• Graph	databases	are	crucial	when	topology is	as	important	as	the	data

• Several	modern	applications

‒ Semantic	Web	and	RDF

‒ Social	networks

‒ Knowledge	graphs

‒ etc.
1

2

3 4

5

α

β

γ

α

β

• Simply	use	standard	relational	databases

• Problems:

‒ We	need	to	navigate	the	graph	 - recursion	is	needed

‒ We	can	use	Datalog - performance	issues (complexity	mismatch,	basic	

static	analysis	tasks	are	undecidable)

1

2

3 4

5

α

β

γ

α

β

Graph	Databases	vs. Relational	Databases

Graph id_o label id_t

1 α 3

1 β 5

1 γ 2

2 β 5

2 α 4

Graph	Data	Model

• Different	applications	gave	rise	to	different	graph	data	models

• But,	the	essence	is	the	same

finite,	directed,	edge	labeled	graphs

Graph	Data	Model

An	graph	database	G over	a	finite	alphabet	Λ	is	a	pair

set	of	edges	of	the	form		v									u

where	u,v ∈ V	and	α	∈ Λ

(V,	E)

finite	set	of	node	ids α

• Path in	G:		π	 =	 v1 v2 v3		 vk vk+1

• The	label of	π is	λ(π) =	 α1α2α3...αk ∈ Λ*

α1 α2 αk…

Graph	Database:	Example

A	graph	database	representation	of	a	fragment	of	DBLP

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

Regular	Path	Queries	(RPQs)

Basic	building	block	of	graph	queries

• First	studied	in	1989

• An	RPQ	is	a	regular	expression over	a	finite	alphabet	Λ

• Given	a	graph	database	G =	(V,E) over	Λ	and	RPQ	Q over	Λ

Q(G)	=	{(v,u)	|	v,u ∈ V		and		

there	is	a	path	π	from	v	to	u	such	that	λ(π)	∈ L(Q)}

RPQs	With	Inverses	(2RPQs)

Extension	of	RPQs	with	inverses		- two-way	RPQs

• First	studied	in	2000

• 2RPQs	over	Λ		=	 RPQs	over	Λ± = Λ ∪ {α− |	α	∈ Λ}

• Given	a	graph	database	G =	(V,E) over	Λ	and	2RPQ	Q over	Λ

Q(G)	 =	 Q(G±)

obtained	from	G by	adding		u	 v		for	each		v	 u	α− α

Querying	Graph	Database

Compute	the	pairs	(c,d)	such	that	author	c	has	published	in	conference	or	journal	d

(creator‒ ((partOf ⋅ series)	∪ journal))

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

Querying	Graph	Database

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series

cd

creator

creator

creator

creator

Compute	the	pairs	(c,d)	such	that	author	c	has	published	in	conference	or	journal	d

(creator‒ ((partOf ⋅ series)	∪ journal))

Querying	Graph	Database

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

c

d

Compute	the	pairs	(c,d)	such	that	author	c	has	published	in	conference	or	journal	d

(creator‒ ((partOf ⋅ series)	∪ journal))

Evaluation	of	2RPQs

EVAL(2RPQ)

Input:	a	graph	database	G,	a	2RPQ	Q,	two	nodes	v,u of	G

Question: (v,u)	∈ Q(G)?	

RegularPath

Input:	a	graph	database	G	over	Λ,	a	regular	expression	Q	over	Λ±,

two	nodes	v,u of	G

Question: is	there	a	path	π	from	v	to	u	in	G± such	that	λ(π)	∈ L(Q)

It	boils	down	to	the	problem:

Complexity	of	RegularPath

Theorem: RegularPath can	be	solved	in	time	O(|G|	⋅ |Q|)

Proof	Idea:	by exploiting	nondeterministic	finite	automata	(NFA)

• Compute	in	linear	time	from	Q an	equivalent	NFA	AQ

• Compute	in	linear	time	an	NFA	AG	 obtained	from	G± by	setting	v	and	u	as	initial	and	

finite	states,	respectively

• There	is	a	path	π	from	v	to	u	in	G± such	that	λ(π)	∈ L(Q) iff L(AG)	∩ L(AQ)	is	non-empty

• Non-emptiness	can	be	checked	 in	time	O(|AG|	⋅ |AQ|)	=	O(|G|	⋅ |Q|)

A	graph	database	can	be	naturally	seen	as	an	NFA

• nodes	are	states

• edges	are	transitions

Complexity	of	2RPQs

We	immediately	get	that:

Theorem: EVAL(2RPQ)	can	be	solved	in	time	O(|G|	⋅ |Q|)

Regarding	the	data	complexity	(i.e.,	Q is	fixed):

Theorem: EVAL[Q] (2RPQ)	is	in	NLOGSPACE

(by	exploiting	the	previous	automata	construction)

Limitation	of	RPQs

• RPQs	are	not	able	to	express	arbitrary	patterns	over	graph	databases	

(e.g.,	compute	the	pairs	(c,d)	that	are	coauthors of	a	conference	paper)

• We	need	to	enrich	RPQs	with	joins and	projections

‒ Conjunctive	regular	path	queries	(CRPQs)

‒ C2RPQs	if	we	add	inverses

C2RPQs:	Example

Compute	the	pairs	(c,d)	that	are	coauthors	of	a	conference	paper

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

C2RPQs:	Example

Compute	the	pairs	(c,d)	that	are	coauthors	of	a	conference	paper

Q(x,u)	 :- (x,	creator‒,	y),	(y,	partOf ⋅ series,	z),	 (y,	creator,	u)

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

xy

z
u

(:	Moshe_Y_Vardi,	:Ronald_Fagin)

C2RPQs:	Formal	Definition

A	C2RPQ	over	an	alphabet Λ is	a	rule	of	the	form

Q(z)	:- (x1,	Q1,	y1),	…,	(xn,	Qn,	yn)

where		xi,	yi are	variables,	

Qi	is	a	2RPQ	over	Λ,	

z are	the	output	variables	from	{x1,	y1,	…,	xn,	yn}

Remark: C2RPQs	are	more	expressive than	2RPQs	(previous	example)

Evaluation	of	C2RPQs

To	evaluate	a	C2RPQ	of	the	form

Q(z)	:- (x1,	Q1,	y1),	…,	(xn,	Qn,	yn)

we	simply	need	to	evaluate	the	conjunctive	query

Q(z)	:- Q1(x1,	y1),	…,	Qn(xn,	yn)

where	each	Qi stores	the	result	of	evaluating	the	2RPQ	Qi

Complexity	of	C2RPQs

Theorem: EVAL(C2RPQ)	is	NP-complete

Proof	Hints:

• Upper	bound: polynomial	time	reduction	to	EVAL(CQ)

• Lower	bound: inherited	from	CQs	over	graphs

Regarding	the	data	complexity	(i.e.,	Q is	fixed):

Theorem: EVAL[Q](C2RPQ)	is	in	NLOGSPACE

Basic	Graph	Query	Languages:	Recap

• Two-way	regular	path	queries	(2RPQs)

‒ Can	be	evaluated	in	linear	time	in	combined	complexity,	and	

in	NLOGSPACE	in	data	complexity

• Conjunctive	2RPQs	(C2RPQs)

‒ Evaluation	is	NP-complete	in	combined	complexity,	and	in	

NLOGSPACE	in	data	complexity

Towards	Tractable	C2RPQs

1

6
7

3
4

8

5

2

9

10
11

12

13

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Recall	acyclic	conjunctive	queries

A	C2RPQ	is	acyclic if	its	underlying	CQ	is	acyclic

Q	:- (x,	Q1,	x),	(x,	Q2,	y),	(y,	Q3,	x)

Q	:- (x,	Q1,	y),	(y,	Q2,	z),	(z,	Q3,	x)

Equivalently,	the	underlying	graph	does	not	contain	cycles	of	length	≥ 3

Acyclic	C2RPQs

yx

z

yx

Complexity	of	Acyclic	C2RPQs

Theorem: EVAL(AC2RPQ)	can	be	solved	in	time	O(|G|2 ⋅ |Q|2)

Proof	Idea:	recall	that	we	can	reduce	EVAL(C2RPQ)	to	EVAL(CQ)

{Q ∈ C2RPQ |	Q	is	acyclic}

Simple	Path	Semantics

RegularSimplePath

Input:	a	graph	database	G	over	Λ,	a	regular	expression	Q	over	Λ±,

two	nodes	v,u of	G

Question: is	there	a	simple path	π	from	v	to	u	in	G± such	that	λ(π)	∈ L(Q)

Simple	Path:	No	node	is	repeated

In	this	case,	EVAL(2RPQ)	boils	down	to	the	problem:

Simple	Path	Semantics

Theorem: RegularSimplePath is	NP-complete

Theorem: RegularSimplePath[Q]	is	NP-complete	(data	complexity)

• RegularSimplePath(0.0)*

• Is	there	a	simple	directed	path	of	even	length?	NP-complete

• NP-complete	data	complexity	means	impractical

Containment	of	Graph	Queries

CONT(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1		⊆ Q2?	(i.e.,	Q1(G)	⊆ Q2(G)	for	every	graph	database	G?)

Containment	of	Graph	Queries

Theorem: CONT(RPQ)	is	PSPACE-complete

Proof	Hint: exploit	containment	of	regular	expressions

Theorem: CONT(2RPQ)	is	PSPACE-complete

Proof	Hint: exploit	containment	of	two-way	automata,	while	the	lower	bound	is	

inherited	from	RPQs

Theorem: CONT(C2RPQ)	is	EXPSPACE-complete

Proof	Hint:	exploit	containment	of	two-way	automata,	while	the	lower	bound	is	

by	reduction	from	a	tiling	problem

Querying	Graphs	With	Data

• So	far	queries	talk	about	the	topology	of	the	data

• However,	graph	databases	contain	data		- data	graphs

• We	have	query	languages	that	can	talk	about	data	paths

(obtained	by	replacing	each	node	in	a	path	by	its	value)

